Application of Laplace Adomian Padé approximant to solve exponential stretching sheet problem in fluid mechanics
نویسندگان
چکیده
ABSTRACT: The purpose of this study is to apply Laplace Adomian Decomposition Method (LADM) for obtaining the analytical and numerical solutions of a nonlinear differential equation that describes a magnetohydrodynamic (MHD) flow under the stretching sheet problem. By using this method, the similarity solutions of the problem are obtained. For obtaining computational solutions, we combined the obtained series solutions by the LADM with the Padé approximation. The method is easy to apply and give high accuracy results. From the tables and figures efficiency of the presented technique is shown.
منابع مشابه
Laplace Adomian Decomposition Method Applied to a Two-Dimensional Viscous Flow with Shrinking Sheet
Our aim in this piece of work is to demonstrate the power of the Laplace Adomian decomposition method (LADM) in approximating the solutions of nonlinear differential equations governing the two-dimensional viscous flow induced by a shrinking sheet. Keywords—Adomian polynomials, Laplace Adomian decomposition method, Padé Approximant, Shrinking sheet.
متن کاملAnalytical and Numerical Investigation of Second Grade Magnetohydrodynamics Flow over a Permeable Stretching Sheet
In this paper, the steady laminar boundary layer flow of non-Newtonian second grade conducting fluid past a permeable stretching sheet, under the influence of a uniform magnetic field is studied. Three different methods are applied for solving the problem; numerical Finite Element Method (FEM), analytical Collocation Method (CM) and 4th order Runge-Kutta numerical method. The FlexPDE software p...
متن کاملCompare Adomian Decomposition Method and Laplace Decomposition Method for Burger's-Huxley and Burger's-Fisher equations
In this paper, Adomian decomposition method (ADM) and Laplace decomposition method (LDM) used to obtain series solutions of Burgers-Huxley and Burgers-Fisher Equations. In ADM the algorithm is illustrated by studying an initial value problem and LDM is based on the application of Laplace transform to nonlinear partial differential equations. In ADM only few terms of the expansion are required t...
متن کاملAn Efficient Numerical Method to Solve the Boundary Layer Flow of an Eyring-Powell Non-Newtonian Fluid
In this paper, the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linearly stretching sheet is solved using the combination of the quasilinearization method and the Fractional order of Rational Chebyshev function (FRC) collocation method on a semi-infinite domain. The quasilinearization method converts the equation into a sequence of linear equations then, using the FRC coll...
متن کاملSeries Solution of Weakly-Singular Kernel Volterra Integro-Differential Equations by the Combined Laplace-Adomian Method
To solve the weakly-singular Volterra integro-differential equations, the combined method of the Laplace Transform Method and the Adomian Decomposition Method is used. As a result, series solutions of the equations are constructed. In order to explore the rapid decay of the equations, the pade approximation is used. The results present validity and great potential of the method as a powerful al...
متن کامل